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A computationally efficient and stable adaptive grid solution procedure is developed for 
convection diffusion problems. In this method, grid refinement and adaptation is based on an 
equidistribution law but is only performed in regions with high error estimates that are 
flagged from a preliminary coarse grid solution. The equidistribution law is implicit in the grid 
generation procedure which requires the solution of two Poisson equations with control func- 
tions that are obtained directly from the error estimates or weighting functions at the grid 
points. Solution on the refined, equidistributed mesh in the flagged region is obtained with 
boundary conditions interpolated from the coarse grid results. Accurate solutions in both the 
flagged region and the coarse grid regions of the domain are obtained with a multigrid 
approach that requires successive solutions on the refined, equidistributed mesh in the flagged 
region and on the coarse mesh in the entire domain. The adaptive grid method including the 
multigrid calculations can be extended to several levels of refinement. The acronym LAME is 
coined for this procedure in view of its Local Adaptation, Multigridding, and Equidistribution 
features. The method is shown to be stable, computationally efficient, and accurate by 
applying it to three test problems and comparing with conventional calculations on a tixed 
curvilinear grid. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Recent interest in grid generation has focussed on the development of dynami- 
cally adaptive grid systems in which the grid points move in response to the 
evolving solution. The grid points should move such that they are always densely 
clustered in regions of larger solution variations where error estimates are expected 
to be higher. Since the solution error is generally proportional to the product of the 
local grid spacing raised to some power and a measure of the local solution varia- 
tion, clustering grid points in regions of large solution variation is tantamount to 
equidistributing a measure of the solution error over the solution domain. A 
dynamic procedure is necessary because the regions of large solution variations are 
not known a priori to the solution and evolve as the solution is driven to con- 
vergence or steady-state conditions. 

A number of studies on adaptive grid solution procedures have been reported, 
and it is not the intent here to provide an exhaustive survey of the literature. 
Thompson [ 1 ] provides an excellent survey of dynamically adaptive grid systems. 
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As noted in [l], all adaptive grid procedures attempt to equidistribute a measure 
of the error, but differ in their individual approaches. 

The most popular approach has been one in which a weighting function W which 
is proportional to a measure of the error (typically containing the first or second 
derivative of the dependent variable 4 or some combination of first and second 
derivatives) is calculated at all points and the mesh size As is adjusted so that 
W. As is nearly the same at all points in the entire domain. Approaches of this or 
similar kind have been reported by a number of investigators [2-111. For the lack 
of a better name, this method will be referred to as the global equidistribution 
approach in this paper. Acharya and Patankar [2] have used a normalized second 
derivative tiyy as the weighting function. A linear combination given by 

l+~l$,I+m4,I was used as a measure of the weighting function by Dwyer et al. 
[3-51 and also by Gnoffo [6] (with fl=O). In [6], the idea of a spring analogy 
represented in the equation for the weighting function was introduced and was 
extended by Nakahashi and Deiwert [7] who introduced the notion of a torsion 
spring attached to each node in order to control the inclination of the grid lines. 
Rai and Anderson [8,9], Greenberg [lo], and Eiseman [ 111 have each used the 
idea of moving the grid points under the influence of forcing or weighting functions 
that either attract or repel grid points relative to each other. Thus points with 
forcing (or weighting) functions greater than a specified average value attract each 
other, and those with values less than the average value repel each other. 

A second approach (called the oariutional approach here) is to use a variational 
principle in which the grid generation system can be obtained from the Euler’s 
equation for the minimization of an integral whose integrand is proportional to a 
measure of the error. As shown in [l], this minimization process is equivalent to 
the solution of a Poisson equation with the inhomogeneous terms proportional to 
a measure of the error. Brackbill and Saltzman [12, 131, Yanenko et al. [14], and 
Bell and Shubin [15] have each used the variational principle for grid adaptation. 

The two approaches outlined above generally involve the movement of all the 
grid points in the domain. These approaches are associated with problems of 
excessive grid skewness, oscillations in the solution, etc. A third approach, which 
avoids some of these problems is one in which the mesh is relined only in the region 
where the error estimate exceeds a critical value. This method is termed the local 
mesh refinement approach. Examples of such an approach are due to Berger and 
Jameson [16], Phillips and Schmidt [17], and Caruso et al. [18]. Typically grid 
points with higher error levels are flagged and the flagged region is expanded in 
order to make it rectangular. The mesh size in the rectangular flagged region is 
typically halved and calculations repeated only in the flagged, finer grid region. In 
[18], an additional step similar to that in a multi-grid method was performed by 
repeating the calculations in the original coarse grid but with correction terms 
added to the coarse grid equations in the flagged region so that the solution in that 
region matches the corresponding fine grid solutions. There are two major disad- 
vantages of the studies reported under this approach. The first is that the flagged 
region is generally subdivided uniformly without consideration of the relative 
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magnitudes of the errors at the flagged points and therefore the mesh in the flagged 
region is less than optimal. The second disadvantage is that a non-rectangular 
flagged region (in the computational space) is generally accounted for by including 
non-flagged points so as to generate a rectangular domain or by using overlapping 
rectangular domains. Both these practices are computationally inefficient. 

In this paper the development of a stable, computationally efficient adaptive grid 
solution procedure is sought. Of the three approaches described so far, the method 
developed in this paper is probably best described by the local mesh refinement 
approach, but unlike earlier studies, the present method is capable of efficiently 
dealing with non-rectangular flagged regions, and more importantly, grid refine- 
ment in each such flagged region is based on equidistribution concepts such that a 
near-optimal grid in each flagged region is obtained. In addition, multigrid concepts 
have been built into the adaptive grid procedure so that the solution accuracy in 
the entire domain and in the refined flagged region are both significantly improved. 
The resulting adaptive grid procedure is stable and computationally efficient and 
details of this procedure are described next. 

In the discussion that follows, the discretization procedure on a curvilinear grid 
is first described followed by the details of the adaptive grid technique, and finally 
the results of the adaptive grid solution procedure on a number of test problems are 
presented. 

2. DISCRETIZED CONSERVATION EQUATIONS 

The numerical solution on a curvilinear grid involves three steps: grid generation, 
discretization of the conservation equations, and solution of the discretized equa- 
tions. Since many of these details can be found elsewhere [ 19, 203, only the 
important issues are briefly described here. 

Grid Generation 

Generating a grid in an arbitrary physical domain involves a coordinate transfor- 
mation from the physical space (x, Y) to the computational space (5, q) (see Fig. 1). 
This is done here by solving a system of Poisson equations [20], 

axg< -v+ + YX,, = Pl 

aYysc - 2PYs, + YY,, = p2, 

(1) 

(2) 

where 

and 

cl=x;+ y;, P = xexs + Y, Yq3 y=x;+ y: (3) 

P, = -J2[xSP+x,Q-J, P,= -J*Cy,P+ Y,QI. 
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(a) Physical Space (b) Computational Space 

FIG. 1. Schematic of curvilinear coordinate system. 

In the above equations, J is the Jacobian ( =xg y, - x,, ye;) and P and Q are control 
functions which can be chosen in order to provide a denser distribution of points 
in certain regions. Anderson and Steinbrenner [21] have shown that with proper 
choices for P and Q that relate them to the local error estimates or weighting 
functions, Eq. (1) and (2) can be interpreted as an equidistribution law. In this 
paper, advantage is taken of this fact and Eq. (1) and (2) are used for generating 
the initial curvilinear grid and also the adaptive grid in each flagged region. 
Additional details are given in the next section. 

Central differences are used to discretize Eq. (1) and (2). The resulting system of 
algebraic equations are solved iteratively by a line by line tri-diagonal matrix or 
Thomas algorithm [22]. The resulting solution gives x, y values at uniform {, q 
values, and all metric quantities can be calculated from this solution. 

Discretization of the Conservation Equations 

The conservation equations for the convection-diffusion of a transport variable 
$ in curvilinear coordinates can be expressed as 

where S is the source term and G, and G2 are the contravariant velocity com- 
ponents defined by 

G,=uy,-vxtt, G2 = vxt - uy, (6) 

and p and r denote the density and diffusion coefficient of the fluid, respectively. 
The task of the discretization process is to approximate the differential equation by 
algebraic equations at the grid points. To this end, a control-volume based finite 
difference procedure is adopted in this study, in which control volumes are first 
defined around each grid point, as shown in Fig. 1. Equation (5) is then expressed 
in an integral form over each control volume consisting typically of a grid point P, 
with E, W, N, and S (east, west, north, and south) neighboring grid points and 
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corresponding e, IV, n, and s control volume faces. This leads to an integral balance 
equation of the form 

W,4 - WJ)(4< - B4,K 4 + CPG,$ - WJNY~, -Pbt:)l: At = S,JAvfS (7) 

where [...I’, denotes [...I,- [...I,. The terms in the parenthesis 4, $e, and c$~ 
are expressed at the interfaces w, e, s, and n in Eq. (7), but since 4 is stored at the 
grid points, the interface values have to be expressed in terms of the grid point 
values. Therefore profile approximations are necessary. In this paper, the Power- 
Law profile has been chosen [23], since it has been shown to be more accurate 
than either the central-difference, upwind, or hybrid schemes [24]. The resulting 
algebraic equation has the form 

a,#,=~&,+ aw~w+a,~,+as~s+bs+b,,, (8) 

where up, aEy aw, aNy and a, are convection-diffusion coefficients, b, is the source 
term contribution, and b,, is the contribution due to non-orthogonality of the 
grid. The expressions for these coefficients, and additional details are given else- 
where [20]. 

Solution of the Discretized Equations 

Equation (8) represents a penta-diagonal system of equations and is solved here 
by a line by line Thomas algorithm [22]. This line by line algorithm is similar, in 
concept, to the AD1 method and is described in greater detail in [24]. 

3. ADAPTIVE GRID SOLUTION PROCEDURE 

In the adaptive grid procedure developed in this paper, the grid is refined in 
flagged regions where the error levels or weighting functions exceed a specified 
threshold value. Thus, all or nearly all of the grid points in the domain are not 
forced to move each time the grid adaptation is performed. This reduces the 
problem of oscillations between the grid and the solution that characterizes some 
of the global equidistribution methods [2-51. In this regard, the present method 
may be considered to fall under the local mesh refinement category. However, as 
noted earlier, the method developed in this paper differs from earlier studies under 
this category and embodies a number of major contributions. The first is that it can 
handle an arbitrary cluster of flagged points that do not necessarily yield a 
rectangular flagged region in the computational space. Second, in each flagged 
region the mesh refinement is not done uniformly as in earlier local mesh refinement 
studies [16-181, but by an equidistribution law that provides denser clustering in 
those areas of the flagged region where the error levels or weighting functions are 
relatively higher. In addition, since the solution accuracy in the flagged region 
depends on the accuracy of the interpolated boundary condition, it is also impor- 
tant to have an accurate solution outside the flagged region. To this end, a multi- 
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grid approach is incorporated in the present grid adaptation strategy, by which, the 
solution errors in both the flagged domain and the entire domain are successively 
reduced. 

The solution-adaptive grid procedure developed here is therefore characterized by 
Local Adaptation with Multigridding and Equidistribution concepts (LAME). The 
major steps of this procedure are flagging of points to generate flagged regions (that 
are not necessarily rectangular), generating a finer mesh in the flagged regions using 
an equidistribution law, interpolation of boundary conditions along the boundaries 
of the flagged region, and a multi-grid-type calculation between the flagged region 
and the entire domain. These details are described next. 

Defining Flagged Regions 

The solution process is initiated by generating a relatively coarse mesh in the 
domain by solving the set of Poisson equations (Eq. (13) and (14) or Eq. (1) and 
(2)) with zero or specified control functions and performing a pre-assigned number 
of iterative calculations on this grid. An error estimate or weighting function W is 
then calculated at each grid point. For this purpose W is defined as 

W=a,J IV’4 + a,(V$Lq’+ a,J IV< .Vql +c(,J(v<2+vrj2). 

The first term represents the rate of change of the gradient of the dependent 
variable (V2d), the second term is proportional to the gradient of the dependent 
variable (VqS), the third term is the local orthogonality of the grid (Vc .Vq), and the 
last term is a measure of the grid smoothness. Each term is of the same order of 
magnitude, and the relative importance of the various terms is controlled through 
the constants a,, aZ, CQ, and CC,. 

To flag points, a normalized weighting function @ is defined as 

w= (1 + W)/( 1 + W,,,) (10) 

and points are flagged if the normalized weighting function w  is greater than a 
preassigned value. A flagged region is generated by identifying a cluster of con- 
tiguous points. To create the cluster, a flagged point is initially chosen, and flagged 
points are added to the cluster if they are the neighbors of a flagged point already 
in the cluster. The cluster is closed if no new flagged points can be added to it. A 
new cluster or flagged region is then generated with another flagged point (not yet 
enclosed in a cluster) acting as a nucleus or starting point for the new cluster. By 
this means, clusters of flagged points or flagged regions are generated until all the 
flagged points are enclosed in one cluster or another. 

The boundaries of the flagged region, in the computational space, are the control 
volume faces of the outermost string of points in the cluster (Fig. 2). Therefore, 
unlike earlier studies, no constraint requiring the flagged regions to be rectangular 
(or consisting of overlapping rectangles) in the computational space is imposed. 
This is potentially advantageous, particularly from the viewpoint of computational 
efficiency. 
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FIG. 2. A typical flagged region. 

Grid Generation in the Flagged Region Using an Equidistribution Scheme 

Once flagged regions have been defined in the computational domain, the next 
step is to generate a finer mesh in the flagged region using an equidistribution 
scheme such that areas within the flagged region that are associated with higher 
error levels or weighting functions have the densest grid point clustering. Thus a 
more optimal mesh in the flagged region will be obtained compared to the mesh 
obtained by simply reducing the mesh size everywhere, say by half. The latter 
practice has been adopted in earlier local mesh refinement studies [l&18]. 

To obtain a refined grid in the flagged region using an equidistribution scheme, 
the ideas of Anderson and Steinbrenner [21] are used. In [21] it is shown that the 
conventional grid generation procedure of solving two Poission equations (Eq. (1) 
and (2)) can be interpreted as an equidistribution scheme, if the control functions 
P and Q are related to local error levels or weighting functions. This approach of 
using control functions P and Q in the Poisson equations to force grid movement 
in order to obtain an equidistributed grid has also been established from variational 
principles [25,26]. Thus the same grid generation routine that is used in obtaining 
the initial curvilinear grid in the entire domain can be used to calculate the equi- 
distributed grid in each flagged region. This practice is computationally efficient. 

The relationship between the weighting functions W (or the error levels) and the 
control functions P and Q in Eq. (1) and (2) can be most easily derived by con- 
sidering the one-dimensional equidistribution law along the constant-q line, i.e., 
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where S, is the arc length along a line of constant q, fi(q) is a constant for a given 
curve, and W is the weighting function. Differentiating Eq. (11) with respect to 5, 
the following equation is obtained: 

(s,)cr+ c(w,Iw~I),=o. (12) 

To relate the above equidistribution law to Eq. (l), the control functions are 
redefined as 4 = J’P/ct and 5 = J*Q/y and substituted into Eq. (1) and (2), resulting 
in 

4x<< + 4x,, - 2BX& + Y(X,, + 5x,, = 0 (13) 

4YR + &r,> - VY,, + Yb,, + $Y,) = 0. (14) 

Eliminating $ between the above two equations, and assuming orthogonality and 
zero curvature the following equation for the distance along a constant 4 arc is 
obtained: 

(&+&de=0. (15) 
If the orthogonality and zero curvature constraints are removed then a similar 
equation is obtained, i.e., 

(Sl)C< + dl(Sl), = 0, (16) 

where 

A = 7- C(eIJc - 2(Wtl cot d3 - (s,)~ to,), sin 0,/b,), (17) 

and 8, and O2 are the slopes of the constant q and 5 curves and Oj is the angle of 
intersection ( O2 = 8, + 0,). 

Comparing Eq. (16) and (12) leads to a relationship between the function d1 and 
the weighting function W, and a similar relationship can be derived between $i and 
W. These relationships are 

41= (We/W3 +1= ( W),Iw. (18) 

Thus the conventional elliptic grid generation procedure [ 191 can be interpreted as 
an equidistribution law if the control functions 4 and $ (in Eq. (13) and (14)) are 
obtained from Eq. (17) and (18). This approach is incorporated in the present 
work. 

The expression for the weighting function W, given in Eq. (9), consists of four 
terms, and as explained earlier, these represent the gradient (V#), its rate of change 
(V’$), the local orthogonality (VY .Vv) and the grid smoothness (V<* + Vq*). The 
relative importance of the various terms can be controlled through the constants 
ul, a*, a3, and a4. In this paper, aj and u4 have been set equal to zero. 

To generate the refined grid in each flagged region, the number of grid points 
along the boundaries of the flagged region are increased. In this paper, they have 
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been doubled. The 5 = 5min, <,,, and ‘I= ~,in, qrnax boundaries of the flagged 
region are then chosen. Since the flagged region is not rectangular in the original 
5, q computational space, the choice of r,,,, t,,, and qmln, qmax is not along the 
orginal r and v coordinate directions, respectively. Rather the points along the 
boundaries of the flagged region are divided into four parts and each part is 
assigned to form a new computational boundary, i.e., the t,,,, ~min, t,,,, vmax 
boundaries, respectively. This is illustrated in Fig. 2, where the boundaries of the 
flagged region (dark lines) are divided into four parts with l-2 and 4-3 assigned as 
? mm and rlmax and 14 and 2-3 as 5min and t,,,. With the new boundary grid 
points assigned equally to each of the four boundaries of the flagged region, a 
preliminary grid is guessed or generated in the flagged region and the values of the 
weighting functions W and the control functions 4, and 11/i are interpolated onto 
this grid from the corresponding coarse grid values. Equations (13) and (14) are 
then solved, with the ~$i and +i values interpolated as stated above, and a new 
equidistributed grid is generated in the flagged region. This procedure can be 
extended further and taken to convergence by again interpolating fresh 4, and $i 
values on to the new equidistributed grid, and solving Eq. (13) and (14). The pro- 
cedure is repeated until grid points undergo no further change in position. As a 
final step, boundary grid point locations are adjusted so that the grid is orthogonal 
along the boundaries of the flagged region. This is done by requiring the distance 
I between the first interior grid point xi, yi and the boundary point x(s), y(s) to be 
a minimum, i.e., 

al/as = cxi- x(s))(ax/a.9) + (J+ - y(s))(ayjas) = 0. (19) 

Piecewise cubic spline profiles are used to represent x(s) and y(s) as 

x(s) = a0 + a,s + azs2 + u3s3, y(s) = b,, + b,s + bzs2 + b3s3. (20) 

The coeflicients a, .. . a3 and b, . . . b, are obtained from the original grid point 
values along the boundary. Equations (19) and (20) are solved using Newton’s 
method to obtain the boundary grid point locations. 

The above procedure for generating an equidistributed grid is repeated in each 
flagged region (whether they are multiply connected or not). Only after the relined 
grid in each flagged region is completed, is the solution process initiated. 

Boundary Condition for the Flagged Region 

In order to obtain a solution in the flagged region, boundary conditions have to 
be interpolated from the coarse grid solution along the boundaries of the flagged 
region. The values at the corner of the coarse grid control volume faces along 
the boundaries of the flagged region are first determined as the weighted average of 
the four neighboring coarse grid points. Linear interpolation is then used between 
the coarse grid corner values to calculate the values at the tine grid points along the 
boundary of the flagged region. 
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Correction Terms for the Coarse Grid Equations in Flagged Regions 

Since the tine grid solution in the flagged region is obtained with boundary con- 
ditions interpolated from the coarse grid solution, the latter should be reasonably 
accurate. To this end, a multi-grid type approach is adopted in this paper by which 
consecutive calculations are performed on the coarse grid and tine grid with infor- 
mation exchange between the two solutions (called restriction and prolongation 
operations in a multi-grid method) in each cycle of calculation. In this paper, this 
approach is incorporated by first obtaining a solution on the coarse grid, followed 
by the fine grid solution in the flagged regions with boundary conditions inter- 
polated from the coarse grid solution. The coarse grid equations are again solved 
but with corrected coarse grid equations in the flagged region such that the 
resulting coarse grid solution in the flagged region matches the corresponding line 
grid solution. New boundary conditions are interpolated for the flagged regions 
from the improved coarse grid solution and the solution in the flagged regions is 
again obtained. These consecutive calculations are repeated until convergence 
within a specified tolerance. 

To derive the corrected coarse grid equations in the flagged region, the conser- 
vative property is invoked by which the total flux on the coarse grid must equal the 
total flux on the line grid. Denoting the coarse grid values with a superscript 1 and 
the line grid values by a superscript 0, this conservative property on the coarse 
mesh is expressed by 

CP’G:~’ - (~‘/J’)(~‘4~ - B’4;)lt; + CP’%+ - (~‘/J’)(Y’~:, - P’4;,1, 

= b’G%‘- (~“/J’)(a14:- P’ti;)li; 

+ CP~~~~~-~~~/J’~~Y’~~-B’~~~~,. (21) 

Assuming the same physical properties (p’ = p”, r’ = r”) and conservation of mass 
(G: = Gy, G: = Gi) on both grids, the above equation reduces to 

C~x’4’lt; + CLWI, = CJw”lr + cw$“l~~ (22) 

where 

Equation (22) is the coarse grid correction equation in the flagged region. 
Although derived by requiring fluxes to be conserved on both grids, Eq. (22) can 
be directly derived by requiring the coarse grid values (4’) to be equal to the fine 
grid values (4”) in the flagged region. This requirement directly leads to Eq. (22). 

Comparing Eq. (5) and (22), it can be seen that the left-hand sides of the two 
equations are the same, but the right-hand sides are different. In Eq. (22), the right- 
hand side may be viewed as a correction term so that 4’ will be equal to 4” in the 
flagged region. Thus, after the fine grid solution $” is obtained in the flagged region, 
the coarse grid calculations are done by solving Eq. (5) outside the flagged regions 
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and by solving Eq. (22) in the flagged regions. This will lead to more accurate 
coarse grid solutions. 

The Generalized LAME Procedure 

The description, so far, has been given with one level of refinement in mind, but, 
in practice, the method is not limited to one level of refinement and generalization 
to multiple levels of refinement is straightforward. If the solution on the coarsest 
grid is denoted by V,, and the solution on successively liner grids in the flagged 
regions by I’,,, V-,, VP,, . . . . Vpi+,, V-i ,,,, 9 V-,, then multigrid type calculations 
can be performed by iterating from the coarsest to the finest grid and then back‘ 
again. Each level of refinement has its own flagged region (say Qpi) that typically 
will be embedded in the flagged region corresponding to the previous refinement 
(Qmi+ i). This generalized LAME procedure is described by the following steps: 

1. Define a preliminary coarse grid (Q i ) in curvilinear coordinates in the 
domain, and obtain a solution V, on it. 

2. For the first level of refinement (i=O), flag grid points if normalized 
weighting functions exceed a specified value. For higher levels of refinement ( -i) 
flag grid points with normalized weighting functions higher than those specified in 
the previous level of refinement ( - i + 1). Thus flagged regions (Q-,) are generated 
at any level of refinement, and typically, 52 -i is embedded in 52 -i+ i : 

3. Generate a liner mesh in Q _ i based on an equidistribution scheme in each 
flagged region. 

4. Interpolate boundary conditions along the boundaries of each flagged 
region from the available solution on the previous mesh ( Ki+ i). 

5. Obtain the solution Vpi in each flagged region 52-i. 

6. Calculate correction terms in sZpi for the equations on the previous mesh 
(Q _ ;+ i). Solve the new set of equations in Q _ i+ i to obtain an improved ( - i + 1) 
level solution, V- i + i . 

7. Repeat steps 4-6 until a specified level of convergence is obtained. 

8. Advance to the next level of refinement and repeat steps 2-7. 

9. Proceed until the solution in the finest desired level of refinement V-, is 
obtained. 

4. RESULTS AND DISCUSSION 

The performance of the adaptive grid solution procedure is examined by solving 
three typical problems. Adaptive grid calculations are initiated on a preliminary 
11 x 11 or 12 x 12 coarse grid as explained earlier. Therefore adaptive grid results 
are compared with a conventional 11 x 11 or 12 x 12 curvilinear grid calculation. 
Since adaptive grid calculations require more work (or cpu time) per step, it is also 
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appropriate to compare the adaptive grid results with the conventional calculation 
on a uniformly finer curvilinear grid that takes the same amount of cpu time. For 
all calculations, only one level of refinement is performed. To make a meaningful 
comparison, both solutions are driven to the same level of convergence. 

Test Problem I-Heat Conduction with Discontinuous Boundary Temperature 

The lirst test problem is that of two-dimensional heat conduction in a rectangular 
plate with a step change in temperature along the upper boundary. The physical 
situation is depicted in Fig. 3. The governing differential equations and boundary 
conditions are 

Txx + T.vy = 0 (24) 

T(O,y)=T(l,y)=T(x,O)=O (25) 

T(x, l)= 1 for O<x<i; T(x, l)= -1 for i<x<l. (26) 

An analytical solution to Eq. (24)-(26) is given by 

T(x, y) = f (2/kn)[ 1 + cos(kn) - 2 cos(klc/2)] sin kzx 
k=l 

x sinh(kny)/sinh(kn). (27) 

Since the largest temperature gradients are expected near the upper boundary, 
and particularly in the vicinity of (4, l), the flagged region is also expected to be 
at the top. Figure 4 shows the flagged region, and the mesh generated using the 
equidistribution scheme described earlier. As expected, the finest mesh is obtained 
in the vicinity of (5, l), (0, l), and (1, 1). As may be seen, the mesh in the flagged 
region appears to have the desirable features. 

t 

FIG. 3. Physical domain and boundary condition for Test Problem 1 (heat conduction with discon- 
tinuous boundary temperature). 
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FIG. 4. Preliminary 12 x 12 coarse grid (dashed lines) and refined grid in flagged region (solid lines) 
for Test Problem 1. (Note that all lines denote control volume faces. Grid points are at the center of 
each control volume and along the boundaries.) 
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FIG. 5. Percentage error with a conventional calculation on a 12 x 12 uniform grid for Test 
Problem 1. 
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% ERROR 

12.0 

9.6 

2.4 

FIG. 6. Percentage error with an adaptive grid procedure initiated on a 12 x 12 uniform grid for Test 
Problem 1. 

FIG. 7. Percentage error with a conventional calculation on a 20 x 20 uniform grid for Test 
Problem 1. 
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Ri 

FIG. 8. Physical domain and boundary condition for Test Problem 2 (conduction in a rotating 
hollow cylinder). 

Figures 5-7 show the percentage error in the solutions on a conventional 12 x 12 
grid (Fig. 5), on an adaptive or equidistributed grid generated from an initial 
12 x 12 coarse grid (Fig. 6), and on a liner 20 x 20 conventional grid whose solution 
requires the same effort as the adaptive grid calculation (Fig. 7). Conventional solu- 
tion on a 12 x 12 mesh has errors ranging from 5 to 15 % over most of the domain. 
The adaptive grid calculations dramatically reduce the error levels to values typi- 
cally in the 2 to 5 % range. The conventional calculations on a finer 20 x 20 grid 
requiring the same effort as the adaptive grid procedure has error levels as high as 
11% (near (5, 1 ), where temperature gradients are large. 

FIG. 9. Preliminary 11 x 11 coarse grid (dashed lines) and refined grid in the flagged region (solid 
lines) for Test Problem 2 (see additional comments in legend of Fig. 4). 
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FIG. 10. Percentage error with a conventional calculation on a 11 x 11 uniform grid for Test 
Problem 2, Pe = 100. 

% ERROR 

FIG. 11. Percentage error with an adaptive grid procedure initiated on a 11 x 11 uniform grid for 
Test Problem 2, Pe = 100. 

581/91/l-4 



48 ACHARYA AND MOUKALLED 

It should be pointed out that in the adaptive grid calculation the mesh in the 
middle and lower parts of the domain is the original 12 x 12 uniform mesh on 
which the calculations are initiated and this mesh is considerably coarser than the 
conventional 20 x 20 mesh. Yet, the errors in the nonflagged region in the adaptive 
grid procedure are considerably lower than the corresponding errors with the 
conventional calculation on the 12 x 12 grid and comparable to the errors in the 
solution in the liner 20 x 20 grid. This demonstrates the power of the multigrid type 
calculation incorporated in the present work. 

Test Problem 2-Conduction in a Rotating Hollow Cylinder 

Radial heat conduction in a rotating hollow cylinder is a commonly studied test 
problem used to test numerical schemes for convection-diffusion problems [25, 261. 
A schematic of the physical situation is shown in Fig. 8. The angular speed is o and 
the temperatures of the inner and outer surfaces are T, and T,,. The density p, 
specific heat cp, and thermal conductivity k of the cylinder are assumed to be 
constant. 

In polar coordinates, the problem is one-dimensional and an analytical solution 
is available. In a Cartesian domain, shown shaded in Fig. 8, the problem is two- 
dimensional and is described by the following dimensionless convection+liffusion 
equation 

where 

and 

4 = (T- To)l(Ti- TO), U = u/(wRi), 

V= o/(oRi), Pe = po2Rf f(k/c,) 

X = xfRi, Y = y/R,. 

(29) 

(30) 

Adaptive grid calculations are initiated on a 11 x 11 grid for a Peclet number Pe 
of 100, and results are compared with the analytic solution given by 

U=2Y, v= -2X, q5 = 1 - Ln(X2 + Y2)/2 Ln 3. (31) 

Figure 9 shows the original 11 x 11 coarse mesh (9 x 9 control volumes), the 
flagged regions at the two corners and the refined, equidistributed mesh in each 
flagged region. Since the relined mesh is generated by solving a set of elliptic equa- 
tions which are inherently characterized by a smoothing effect, the refined mesh 
near the staircase boundary does not exhibit the staircase profile. As a result, some 
of the near boundary control volumes along the staircase boundaries are coarser 
than is desirable. A remedy to this problem is to join the outermost string of flagged 
points in a cluster by straight lines and to use this as the boundary of the flagged 
region. This remedy is adopted in the next problem. 
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FIG. 12. Centerline profile for ( in Test Problem 2, Pe = 100. 

Figures 10 and 11 show the percentage error in the solution obtained with a con- 
ventional calculation on a 11 x 11 grid and with an adaptive grid solution initiated 
on a 11 x 11 grid. Compared to the conventional calculation where error levels are 
as high as 8 %, the maximum error in the adaptive grid calculation is about 2.5 %. 
A conventional calculation on a 26 x 26 grid takes about the same cpu time as the 
adaptive grid solutions and error levels of the two solutions are comparable. This 
is seen in Fig. 12, where the centerline temperature profile is plotted. The exact 
solution, the adaptive grid solution, and the conventional solution on a 26 x 26 grid 
are nearly identical to each other. 
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FIG. 13. Physical domain and boundary condition for Test Problem 3 (transport of a step profile in 
a uniform velocity field). 
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Test Problem 3-Transport of a Step Profile in a Uniform Velocity Field 

This is another typical problem employed by a number of researchers to test 
various numerical schemes developed to reduce false diffusion errors that become 
significant in velocity fields inclined with respect to the mesh and at high Peclet 
numbers [25,26]. Therefore this problem is a good test of the ability of the adap- 
tive grid procedure to reduce false diffusion errors that are proportional to the mesh 
size and the angle of the velocity vector with respect to the grid lines in the physical 
space. 

The physical situation is shown in Fig. 13 and is governed by the equation 

(4)x + W), = 05 (32) 

where 4 is the dependent variable and u and v are the components of the uniform 
velocity vector u, which in this problem is assumed to be at an angle of 21.8” with 
respect to the horizontal. At x= 0, a step profile in 4 is assumed as shown in 
Fig. 13, and since diffusion has been assumed to be zero in Eq. (32) and the 
velocity field is uniform, this step profile must be convected at an angle of 21.8” to 
the horizontal, with the exact solution being 4 = 1 above the 21.8” line and C$ = 0 
below it. 

The largest gradients, and therefore the flagged region, is expected to be in the 
vicinity of the region where the profile has a step in it. This expectation is confirmed 

1.0 
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0.6 

o,ol I 11 I II I, ; II I J 
0.0 0.2 0.4 0.6 0.6 1.0 

x 

FIG. 14. Preliminary 11 x 11 coarse grid (dashed lines) and refined grid in the flagged region (solid 
lines) for Test Problem 3 (see additional comments in legend of Fig. 4). 



GRID ADAPTATION FOR SCALAR TRANSPORT 

cp 

0.00 

FIG. 15. The distribution of scalar variable m with a conventional calculation 
grid for Test Problem 3. 
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FIG. 16. The distribution of scalar variable 4 with an adaptive grid solution procedure initiated on 
a 11 x 11 uniform grid for Test Problem 3. 
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FIG. 17. The distribution of scalar variable q4 with a conventional calculation on 
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FIG. 18. Vertical centerline profile at x = 0.44. 
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in Fig. 14 which shows the original 11 x 11 coarse grid and the refined flagged 
region. As pointed out in the previous problem, to avoid staircase boundary 
profiles, the boundaries of the flagged region are obtained by joining with straight 
lines the outermost string of flagged points in the cluster. The resulting grid does 
appear to exhibit all the desirable features. 

Figure 15 shows the 4 profile in the x - y domain obtained with a conventional 
calculation on a uniform 11 x 11 grid. A step profile is the correct solution, but the 
calculated profile shows a significant smearing indicative of false diffusion effects. 
The correvonding adaptive grid calculations initiated on the 11 x 11 grid are 
shown in Fig. 16, and the degree of smearing can be seen to be significantly 
reduced, and the profile is much closer to the expected step profile. The results of 
a conventional calculation on a uniform 25 x 25 grid, that requires the same effort 
in cpu time as the adaptive grid calculation, is shown in Fig. 17. Much greater 
smearing in the profile is noted, compared to the adaptive grid results. These con- 
clusions can be best seen in Fig. 18 where the profile along the vertical centerline 
at x=0.44 is plotted. The adaptive grid solution is seen to be superior to the con- 
ventional solution on either the 11 x 11 mesh or the 25 x 25 mesh. Thus, it might 
be said that the adaptive grid procedure is an effective way of minimizing false 
diffusion errors. 

5. CONCLUDING REMARKS 

An adaptive grid solution procedure is developed for convection-diffusion 
problems with local adaptation, multigridding, and equidistribution (LAME) con- 
cepts. The LAME procedure is initiated on a coarse grid and weighting functions 
or error estimates are calculated at each point from a preliminary solution on the 
coarse grid. Grid points are flagged if the weighting functions exceed a specified 
value. Thus clusters of flagged points or flagged regions are generated. The number 
of points in each flagged region is increased and a new mesh based on an equi- 
distribution scheme that uses the local weighting function values is generated. The 
solution on the equidistributed mesh in each flagged region is calculated using 
boundary conditions interpolated from the coarse grid calculations. To improve the 
accuracy of the interpolated boundary conditions, the coarse grid solution should 
be improved, and to this end, a multigrid approach is adopted and coarse grid 
equations solved again with correction terms added to the equations in the flagged 
region so that the coarse grid solution in the flagged region is equal to the corre- 
sponding line grid solution. New boundary conditions are interpolated from the 
improved coarse grid results and the solution in the flagged region is again 
obtained. This process is repeated until convergence. The method can be extended 
to higher levels of refinement in a multi-grid fashion. 

Results are obtained for three test problems and adaptive grid results are com- 
pared with the calculations on a conventional fixed grid. The results clearly 
demonstrate the significant improvements obtained with the LAME procedure. 
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